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Uncertainty and Deep learning

Types of Uncertainty

Aleatoric uncertainty: uncertainty inherent in the observation noise
(problems caused by sensor quality, natural randomness, that cannot
be explained by our data).

Epistemic uncertainty: our ignorance about the correct model that

generated the data (lack of knowledge about the process that
generated the data).
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Uncertainty and Deep learning

What is uncertainty in machine/deep learning!

—— Ground Truth
o Observations

High Aleatoric
Uncertainty

X

1Credits: Huy Nguyen
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Uncertainty and Deep learning

What is uncertainty in machine/deep learning?

— Ground Truth
o Training Data Observations
Model variance

—— Model estimate

l—E High Epistemic Uncertainty j_'

v

2Credits: Huy Nguyen
6/38



Towards scalable uncertainty estimation with deterministic methods, and their fair evaluation

Quantifying DNNs' uncertainty

Bayesian DNN

Bayesian DNN (Blundell et al., 2015)3 is based on marginalization
instead of MAP optimization.

P(Y|X) = Ewnp(wp) (P(YIX,w))
P(Y|X) = /P(Y|X,w)P(w|D/)dw

In practice:

Nemodel

P(Y|X) ~ > (P(Y[X,wi)) with w; ~ P(w|D))
=1

model

Intractability : different techniques to estimate P(w|D)).

3 Charles Blundell et al. (2015). “Weight uncertainty in neural network”. In: ICML.
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Quantifying DNNs' uncertainty

MC dropout

In MC Dropout (Gal and Ghahramani, 2016)*, the authors propose to
average the predictions of several DNNs where they apply dropout across
the model:

Nmodel

PO ) = 5 D PO lt) © B x) 1)
j=1

model

with b/ a vector of the same size of w(t*) which is a realization of a
binomial distribution.

a) Standard Neural Net (b) After applying dropout.

4Yarin Gal and Zoubin Ghahramani (2016). “Dropout as a bayesian approxi i Rep ing model

uncertainty in deep learning”. In: ICML. 8/38
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Quantifying DNNs' uncertainty

Deep Ensembles

In Deep Ensembles (Lakshminarayanan, Pritzel, and Blundell, 2017)°, the

authors propose to average the predictions of several DNNs with different
initial seeds:

Nimodel

_Z Py |w’(t"),x*) ()

Pl x) = =

model

5Balaji Laks} ayanan, Alexander Pritzel, and Charles Blundell (2017). “Simple and scalable predictive

uncertainty estimation using deep ensembles’. In: NeurlPS.
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Quantifying DNNs' uncertainty

Learning Gaussian parameters

For regression tasks, the authors of (Kendall and Gal, 2017; Nix and
Weigend, 1994)® propose to model the outputs of the DNN as the
parameters of Gaussian distribution given an input x. The likelihood
function is as follows:

v — w12
Plybew) = 27T102(x) &P [}/202/(1)5))] (3)

6 Alex Kendall and Yarin Gal (2017). “What uncertainties do we need in bayesian deep learning for computer
vision?” In: NeurlPS; D.A. Nix and A.S. Weigend (1994). “Estimating the mean and variance of the target
probability distribution”. In: ICNN.
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Quantifying DNNs' uncertainty

OVNNI

We notice in OVNNI (Franchi et al., 2021)7 that an ensemble of DNNs
trained to classify One class vs All the other classes (OVA) quantifies the
uncertainty better.

Classe 2 |cjasse 3
Training Dataset

In-Distribution? [D Out of Distribution?
inference inference ol

t t
[ﬂ /® \DD - ®\DD

7 Gianni Franchi et al. (2021). “One Versus all for deep Neural Network Incertitude (OVNNI) quantification’.
In: IEEE Access. 11/38
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Quantifying DNNs' uncertainty

OVADM

In the traditional DNN, the logit outputs of a neural network are
calculated from the latent space embeddings through an affine
transformation f,(x)x = w,” hy,(x) + bk. The probability distribution is
then calculated through the softmax normalization :

 exp (W hu(x) + i)
P(yilx, w) = S exp (kaThu(x) + by)

In OVADM (Padhy et al., 2020)2, the authors propose to use a
Distinction Maximization logit, hence :

fur ()i = = [ o (x) — |
and they also use an OVA training strategy :

2 B 2
L+exp(—fo(X)k) 1+ exp(||hw(x) — wil)

’D(yk‘wi) =

8Shreyas Padhy et al. (2020). isif Il classifiers for predictive uncertainty and out-of-distribution
detection in neural networks”’. In: ICML Workshops
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Quantifying DNNs' uncertainty with LDU

Deterministic Uncertainty Methods (DUMs)

The authors of (Van Amersfoort et al., 2020)° consider that a DNN £,(-)
with trainable parameters w is composed of two main blocks: a feature
extractor h,, and a head g, such that f,(x) = (g © hw)(X)

=] {7 -6

4’

Baseline

Figure: An illustration of Deterministic Uncertainty Methods

9 Joost Van Amersfoort et al. (2020). "Uncertainty estimation using a single deep deterministic neural network”.
In: ICML.
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Quantifying DNNs' uncertainty with LDU

Deterministic Uncertainty Methods (DUMs)

h.,(x) computes a latent representation from x.

To avoid feature collapse (Van Amersfoort et al., 2020)!°, they consider
that h,,(x) is a bi-Lipschitz DNN which implies that for any pair of inputs
x1 and xp from X:

Lylx1 = x2| < [[hw(x1) — ho(x2)[| < La|x1 — x2| (4)

10 joost Van Amersfoort et al. (2020). “Uncertainty estimation using a single deep deterministic neural network’.
In: ICML.
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Quantifying DNNs' uncertainty with LDU
Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

We denote z € R" the latent representation of dimension n of x, i.e.,
z=h,,(x), that is given as input to the Distinction Maximization (DM)
layer. Given a set p,={pi}™,, of m vectors ( p;€R") that are trainable,
we define the DM layer as follows:

]T

DM,(2) = [=llz = pll,. .., ]Iz = pull (5)
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Quantifying DNNs' uncertainty with LDU
Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

Our DNN can be written as:

fu(x) = [gw © (exp(=DM,(he)))] (%) (6)

classifier
prediction  ground truth
< e g
backbone DM layer Jo () i . , i
/ o
08 ¥
cos(-, -
() exp(+) LTask
—_— —_— . .

X -~ uncertainty estimator N

prototypes Pw | N
- ] confidence score 'y
unc
: guC() | _, m----»gUnc
LDlS «-= v
L Entrop

Figure: Overview of LDU
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Quantifying DNNs' uncertainty with LDU
Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

Our training loss is equal to:
rtotal _ pTask | )\(cEntrop 4 Dis | £Unc) (7)

We add a loss to force the prototypes to be dissimilar:
Di
L7 ==>"|lpi — pjll.
i<j

We also add one loss to constrain the latent representation to stay close
to different prototypes:

n

Entrop _ Za(DMp(hw))i' log(o(DMp(he))i),
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Quantifying DNNs' uncertainty with LDU
Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

We propose to train g!N¢ to predict the error of the DNN (Corbiére

et al., 2019; Yu, Franchi, and Aldea, 2021)!1, which helps us link the
prototypes to the uncertainty.

Given an input data x, its groundtruth y (y can be a scalar or a vector if
we deal with regression) and, its loss £T25K(g,,(x), y), we train gunC by
minimizing:

,CUnC = BCE( [ggnc o (EXP(—DMp(hw)))] (X)v‘CTaSk(gW(X)’y))7

11 Charles Corbiére et al. (2019). “Addressing failure prediction by learning model confidence’. In: NeurlPS;
Xuanlong Yu, Gianni Franchi, and Emanuel Aldea (2021). “SLURP: Side Learning Uncertainty for Regression
Problems”. In: BMVC.
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Quantifying DNNs' uncertainty with LDU

Experiments

Experiments
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Quantifying DNNs' uncertainty with LDU

Experiments

Toy example

PCA of MLP PCA of DM-MLP

Figure: PCA 2D projection on the left of a standard MLP and on the right of a
DM-MLP trained on the two moons dataset. Blue and red points indicate the
features of data points of the two classes, respectively.
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Quantifying DNNs' uncertainty with LDU
Experiments

Evaluation metrics for uncertainty quantification

Classification tasks:

- Calibration: ECE (Expected Calibration Error (Guo et al., 2017)*2);
lower is better

- OOD detection: AUC and AUPR; higher is better

Regression tasks:
- AUSE (Area Under Sparsification Error curve); lower is better

Xin Jin  Yn=1

Accuracy(%)

Xout Yout  Your =0

Confidence

Figure: Left: an example for ECE; Right: OOD detection and evaluation.

12Chuan Guo et al. (2017). “On calibration of modern neural networks”. In: ICML.
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Quantifying DNNs' uncertainty with LDU

Experiments

Classification tasks

SEET SEEgs | EDR0E EE
SHADOWLETs 7
Sl S ¥
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Figure: Datasets used in OOD detection task in classification. Left: CIFAR10
training set, Right: SVHN evaluation set.
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Quantifying DNNs' uncertainty with LDU
Experiments

Classification results

CIFAR-10
Method Acct AUCT AUPR?T ECE L
Baseline (MCP) | 88.02 0.8032 0.8713 05126
MCP lipz. ‘ 88.50 0.8403  0.9058 | 0.3820
Deep Ensembles ‘ 89.96 0.8513 0.9087  0.4249
SNGP ‘ 88.45 0.8447 0.9139  0.4254
DUQ ‘ 89.9 0.8446 09144 0.5695
DUE ‘ 87.54 0.8434 0.9082  0.4313
DDU ‘ 87.87 0.8199  0.8754 | 0.3820
MIR ‘ 87.95 0.7574  0.8556  0.4004
LDU #p =128 | 87.95 | 0.8721 0.9147 0.4933
LDU #p = 64 88.06 0.8625 0.9070  0.5010
LDU #p =32 87.83 0.8129  0.8900  0.5264
LDU #p =16 88.33  0.8479  0.9094  0.4975

Table: Comparative results for image classification
CIFAR-10 for the tasks: in-domain classification, and out-of-distribution
detection with SVHN. Results are averaged over three seeds.

tasks. We evaluate on
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Quantifying DNNs' uncertainty with LDU

Experiments

Semantic segmentation task

Figure: An example from the Cityscapes dataset.
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Quantifying DNNs' uncertainty with LDU

Experiments

Semantic segmentation results

Method Ci Ci -CIW 1 Ci CW2 Cit Cw3 Cit Ci4 Ci CIvl5

mloUt ECE] | mioUf ECE) | mloUt ECEJ) | mloUt ECE| | mloUt ECE| | mloUt ECEJ
Baseline (MCP) 76.84% 01180 | 51.50%  0.1793 | 41.45% 02201 | 35.67% 02136 | 30.12% 0.1970 | 24.84% 02131
Baseline (MCP) lipz.  5838%  0.1037 | 44.70% [0:1211 | 38.04% 0.1475 | 32.70% 01802 | 2535% 0.2047 | 18.36% 02048
MC-Dropout 71.88% 01157 | 53.61%  0.1501 | 42.02% 02531 | 35.91% 0.1718 | 29.52% 0.1947 | 25.61%  0.2184
Deep Ensembles 77:23%  0.1139 | 54.98% 01422 |44:63% 01902 [38.00% 01851 | 32.14% 0.1602 | 28.74% 0.1729
LDU (ours) 76.62% [0.0893 ] 52.00% 0.1371 | 43.02% | 0.1314  37.17% | 0.1702 | 3227% 0.1314 | 27.30% | 0.1712

Table: Comparative results for semantic segmentation on Cityscapes and
Cityscapes-C (Hendrycks and Dietterich, 2019)*3.

13Dan Hendrycks and Thomas Dietterich (2019). “Benchmarking Neural Network Robustness to Common
Corrupti and Perturbations’. In: ICLR.
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Quantifying DNNs' uncertainty with LDU

Experiments

Monocular depth task

Figure: An example from the KITTI dataset. Upper: RGB Image; Lower:
depth ground truth by LIDAR.
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evaluation

Experiments

Monocular depth results

Method Depth performance Uncertainty performance
dit d2t d3t  AbsRel| SqRell RMSE| RMSE log| logl0) AUSE RMSE|  AUSE Absrel|

Baseline 0.955 [0.993 0.998 0.060 0.249 2.798 0.096 0.027 - -

Deep Ensembles 0.956 0.993 0.999  0.060 0.236  2.700 0.094 0.026 0.08 0.21
MC-Dropout 0.945 0.992 0.998 0.072 0.287 2.902 0.107 0.031 0.46 0.50
Single-PU 0.949 0991 0.998 0.064 0.263 2.796 0.101 0.029 0.08 0.21
Infer-noise 0.955 [0.993 0.998 0.060 0.249 2.798 0.096 0.027 0.33 0.48
LDU #p=5,A=1.0 0.954 [0.993 0.998 0.063 0.253 2768 0.098 0.027 0.08 0.21
LDU #p =15, A=0.1 0.954 | 0.993 0.998 0.062 0.249 2.769 0.098 0.027 0.10 0.28
LDU #p =30, A=0.1 0.955 0.992 0.998 0.061 0.248 2.757 0.097 0.027 0.09 0.26

Table: Comparative results for monocular depth estimation on KITTI
eigen-split validation set.
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Evaluating uncertainty quantification with MUAD

Overview of the different datasets for uncertainty on autonomous driving:

w H
.
8% L% < 3 § 52 5 388 ft
3E ¥ B o5 2 &8 5% & =55 B
Dataset <5 & Z2 X w» O 0% 0o O=sa =£8§
Foggy Driving | 101 v - - 19 - - v
Foggy Zurich ‘ 40 v - - 19 - - - -
Nighttime Driving | 50 - v - - 19 - - - -
Dark Zurich | 200 - v - - 19 - - - -
Raincouver | 32 - v v - 3 - - - -
WildDash | 26 v v v v 19 - - - -
BDD100K | 1346 v v v v 19 - - - -
ACDC | 4006 v v v v 9 - v v -
Virtwal KITTI2 [ 21260 v - v - “ - v v
Fishyscapes ] 373 - - - - 1942 v - - -
LostAndFound | 1203 - - - - 1949 v - - -
RoadObstacle2l | 327 - v - v 1941 v - - -
RoadAnomaly2l | 100 - - - v 1941 v - - -
Streethazard | 6625 - - - - 134250 v - - -
BDD anomaly | 810 v v v v 17+2 v - - -
MUAD J10413 v v v v 1649 vV V v v

Table: Comparative overview of the different datasets for uncertainty on
autonomous driving.
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Evaluating uncertainty quantification with MUAD

MUAD dataset

Figure: Snapshots from the MUAD dataset showing different types of adverse
conditions and events to evaluate perception models.
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Evaluating uncertainty quantification with MUAD

MUAD dataset

10413 annotated images: 3420 images in the train set, 492 in the
validation set, and 6501 in the test set. 2/3 being day images and 1/3
night images.

3 types of adversity conditions with 2 intensity levels: Fog, Rain, Snow.

21 classes: 19 ID classes (same as Cityscapes), 2 OOD classes (object
anomalies and animals).

7 test sets: Normal sets, Normal set overhead sun, OOD set, Low adv.
Set High adv. Set, Low adv. with OOD set, High adv. with OOD set.

4 supported tasks: Semantic segmentation, Depth estimation, Object
detection 2D /3D, Instance segmentation.
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Evaluating uncertainty quantification with MUAD

Semantic segmentation results

Method normal set 0ol Tow adv. set high adv. set

mloU 1 ECE | mloU 1 ECE| AUROCT AUPR*T FPR| mloU 1 ECE| AUROCT AUPRtT FPR| mloU 1 ECE| AUROCT AUPRT FPR|
Baseline (MCP) 68.90% 0.0138 57.32%  0.0607 0.8624 0.2604  0.3943 31.84%  0.3078 0.6349 0.1185  0.6746 18.94%  0.4356 0.6023 0.1073  0.7547
Bascline (MCP) lipz._ 5396% 001398 | 45.97% 00601 _ 08419 02035 03040 | 16.79% 03336 06303 01051 07262 | 78% 04244 05542 00901 08243
MIR 53.96% 001398 | 45.07% 00601 06223 01460 08406 | 1679% 03336 05143 01035 08708 | 7.8% 04244 04470 00885 09093
MC-Dropout 6533% 00173 | 5562% 00645 08439 02225 04575 | 3338% |0:1320] 07506 01545 05807 | 20.77% |0:3809] 06864 01185 06751
Deep Ensembles 69.80% 0.01296 | 58.:20% 0.0588° 0871 02802 03760 | 3491% 02447 06543 01212 06425 | 2019% 04227 06101 01162 07212
LDU (ours) 69.32% 001356 | 58.20% 00504 | 0.8816 04418 0.3548 | 36.12% 02674 | 07779 02808 0.5381 | 21.15% 04231 | 0.7107 02186 0.6412

Table: Comparative results for semantic segmentation on MUAD.
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Evaluating uncertainty quantification with MUAD

Semantic segmentation results

prediction

groundtruth

unc:

=%
Ty
3 ]

s prediction

3
g -
L

=y

Figure: Illustration of the different confidence scores on one image of MUAD.
Note that the class train, bicycle, Stand food and the animals are OOD.
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Evaluating uncertainty quantification with MUAD

Semantic segmentation results

groundtruth prediction

gUn’s prediction

Figure: Illustration of the different confidence scores on one image of MUAD.
Note that the class train, bicycle, Stand food and the animals are OOD.
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Conclusions

Conclusions

Scalable uncertainty estimation with deterministic method:

We propose LDU: a modification for DNNs to better estimate their
predictive uncertainty.

LDU reaches results comparable to Deep Ensembles with less
computational cost.

MUAD dataset:

We provide a new synthetic dataset with multiple uncertainty
sources for autonomous driving.
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Conclusions

Other information

Latent Discriminant deterministic Uncertainty
https://arxiv.org/abs/2207.10130

®

®

MUAD: Multiple Uncertainties for Autonomous Driving, a
benchmark for multiple uncertainty types and tasks
https://muad-dataset.github.io/
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Conclusions
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Conclusions
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