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Uncertainty and Deep learning

Types of Uncertainty

Aleatoric uncertainty: uncertainty inherent in the observation noise
(problems caused by sensor quality, natural randomness, that cannot
be explained by our data).

Epistemic uncertainty: our ignorance about the correct model that
generated the data (lack of knowledge about the process that
generated the data).
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Uncertainty and Deep learning

What is uncertainty in machine/deep learning1

1Credits: Huy Nguyen
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Quantifying DNNs’ uncertainty

Bayesian DNN

Bayesian DNN (Blundell et al., 2015)3 is based on marginalization
instead of MAP optimization.

P(Y |X ) = Eω∼P(ω|Dl ) (P(Y |X ,ω))

P(Y |X ) =

∫
P(Y |X ,ω)P(ω|Dl)dω

In practice:

P(Y |X ) ≃ 1
Nmodel

Nmodel∑
i=1

(P(Y |X ,ωi )) with ωi ∼ P(ω|Dl)

Intractability : different techniques to estimate P(ω|Dl).

3Charles Blundell et al. (2015). “Weight uncertainty in neural network”. In: ICML.
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Quantifying DNNs’ uncertainty

MC dropout

In MC Dropout (Gal and Ghahramani, 2016)4, the authors propose to
average the predictions of several DNNs where they apply dropout across
the model:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω(t∗)⊙ bj , x∗) (1)

with bj a vector of the same size of ω(t∗) which is a realization of a
binomial distribution.

4Yarin Gal and Zoubin Ghahramani (2016). “Dropout as a bayesian approximation: Representing model
uncertainty in deep learning”. In: ICML. 8 / 38
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Quantifying DNNs’ uncertainty

Deep Ensembles

In Deep Ensembles (Lakshminarayanan, Pritzel, and Blundell, 2017)5, the
authors propose to average the predictions of several DNNs with different
initial seeds:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj(t∗), x∗) (2)

5Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell (2017). “Simple and scalable predictive
uncertainty estimation using deep ensembles”. In: NeurIPS.
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Quantifying DNNs’ uncertainty

Learning Gaussian parameters

For regression tasks, the authors of (Kendall and Gal, 2017; Nix and
Weigend, 1994)6 propose to model the outputs of the DNN as the
parameters of Gaussian distribution given an input x . The likelihood
function is as follows:

P(y |x , ω) = 1√
2πσ2(x)

exp
−[y − µ(x)]2

2σ2(x)
(3)

6Alex Kendall and Yarin Gal (2017). “What uncertainties do we need in bayesian deep learning for computer
vision?” In: NeurIPS; D.A. Nix and A.S. Weigend (1994). “Estimating the mean and variance of the target
probability distribution”. In: ICNN.
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Quantifying DNNs’ uncertainty

OVNNI

We notice in OVNNI (Franchi et al., 2021)7 that an ensemble of DNNs
trained to classify One class vs All the other classes (OVA) quantifies the
uncertainty better.

Out of Distribution?

inference

AVA OVA AVAOVA

Classe 3
Classe 1 Classe 2

Training Dataset

In-Distribution?

inference

7Gianni Franchi et al. (2021). “One Versus all for deep Neural Network Incertitude (OVNNI) quantification”.
In: IEEE Access. 11 / 38
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Quantifying DNNs’ uncertainty

OVADM

In the traditional DNN, the logit outputs of a neural network are
calculated from the latent space embeddings through an affine
transformation fω(x)k = wT

k hω(x) + bk . The probability distribution is
then calculated through the softmax normalization :

P(yk |x,ω) =
exp (wT

k hω(x) + bk)∑
k exp (w

T
k hω(x) + bk)

In OVADM (Padhy et al., 2020)8, the authors propose to use a
Distinction Maximization logit, hence :

fω(x)k = −∥hω(x)− wk∥

and they also use an OVA training strategy :

P(yk |x,ω) =
2

1 + exp (−fω(x)k)
=

2
1 + exp (∥hω(x)− wk∥)

8Shreyas Padhy et al. (2020). “Revisiting one-vs-all classifiers for predictive uncertainty and out-of-distribution
detection in neural networks”. In: ICML Workshops.
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Quantifying DNNs’ uncertainty with LDU

Deterministic Uncertainty Methods (DUMs)

The authors of (Van Amersfoort et al., 2020)9 consider that a DNN fω(·)
with trainable parameters ω is composed of two main blocks: a feature
extractor hω and a head gω, such that fω(x) = (gω ◦ hω)(x)

Figure: An illustration of Deterministic Uncertainty Methods

9Joost Van Amersfoort et al. (2020). “Uncertainty estimation using a single deep deterministic neural network”.
In: ICML.
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Quantifying DNNs’ uncertainty with LDU

Deterministic Uncertainty Methods (DUMs)

hω(x) computes a latent representation from x.
To avoid feature collapse (Van Amersfoort et al., 2020)10, they consider
that hω(x) is a bi-Lipschitz DNN which implies that for any pair of inputs
x1 and x2 from X :

L1∥x1 − x2∥ ≤ ∥hω(x1)− hω(x2)∥ ≤ L2∥x1 − x2∥ (4)

10Joost Van Amersfoort et al. (2020). “Uncertainty estimation using a single deep deterministic neural network”.
In: ICML.
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Quantifying DNNs’ uncertainty with LDU

Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

We denote z ∈ Rn the latent representation of dimension n of x, i.e.,
z=hω(x), that is given as input to the Distinction Maximization (DM)
layer. Given a set pω={pi}mi=1, of m vectors ( pi∈Rn) that are trainable,
we define the DM layer as follows:

DMp(z) =
[
−∥z − p1∥, . . . ,−∥z − pm∥

]⊤ (5)
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Quantifying DNNs’ uncertainty with LDU

Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

Our DNN can be written as:

fω(x) = [gω ◦ (exp(−DMp(hω)))] (x) (6)

Figure: Overview of LDU

16 / 38



Towards scalable uncertainty estimation with deterministic methods, and their fair evaluation
Quantifying DNNs’ uncertainty with LDU

Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

Our training loss is equal to:

Ltotal = LTask + λ(LEntrop + LDis + LUnc) (7)

We add a loss to force the prototypes to be dissimilar:

LDis = −
∑
i<j

∥pi − pj∥.

We also add one loss to constrain the latent representation to stay close
to different prototypes:

LEntrop =
n∑

i=1

σ(DMp(hω))i · log(σ(DMp(hω))i ),
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Quantifying DNNs’ uncertainty with LDU

Introduction on LDU

Latent Discriminant Deterministic Uncertainty (LDU)

We propose to train gunc
ω to predict the error of the DNN (Corbière

et al., 2019; Yu, Franchi, and Aldea, 2021)11, which helps us link the
prototypes to the uncertainty.
Given an input data x, its groundtruth y (y can be a scalar or a vector if
we deal with regression) and, its loss LTask(gω(x), y), we train gunc

ω by
minimizing:

LUnc = BCE(
[
gunc
ω ◦ (exp(−DMp(hω)))

]
(x),LTask(gω(x), y)),

11Charles Corbière et al. (2019). “Addressing failure prediction by learning model confidence”. In: NeurIPS;
Xuanlong Yu, Gianni Franchi, and Emanuel Aldea (2021). “SLURP: Side Learning Uncertainty for Regression
Problems”. In: BMVC.
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Experiments

Experiments
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Quantifying DNNs’ uncertainty with LDU

Experiments

Toy example

Figure: PCA 2D projection on the left of a standard MLP and on the right of a
DM-MLP trained on the two moons dataset. Blue and red points indicate the
features of data points of the two classes, respectively.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Evaluation metrics for uncertainty quantification

Classification tasks:
- Calibration: ECE (Expected Calibration Error (Guo et al., 2017)12);
lower is better
- OOD detection: AUC and AUPR; higher is better

Regression tasks:
- AUSE (Area Under Sparsification Error curve); lower is better

Figure: Left: an example for ECE; Right: OOD detection and evaluation.

12Chuan Guo et al. (2017). “On calibration of modern neural networks”. In: ICML.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Classification tasks

Figure: Datasets used in OOD detection task in classification. Left: CIFAR10
training set, Right: SVHN evaluation set.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Classification results

CIFAR-10
Method Acc ↑ AUC ↑ AUPR ↑ ECE ↓

Baseline (MCP) 88.02 0.8032 0.8713 0.5126

MCP lipz. 88.50 0.8403 0.9058 0.3820

Deep Ensembles 89.96 0.8513 0.9087 0.4249

SNGP 88.45 0.8447 0.9139 0.4254

DUQ 89.9 0.8446 0.9144 0.5695

DUE 87.54 0.8434 0.9082 0.4313

DDU 87.87 0.8199 0.8754 0.3820

MIR 87.95 0.7574 0.8556 0.4004

LDU #p = 128 87.95 0.8721 0.9147 0.4933
LDU #p = 64 88.06 0.8625 0.9070 0.5010
LDU #p = 32 87.83 0.8129 0.8900 0.5264
LDU #p = 16 88.33 0.8479 0.9094 0.4975

Table: Comparative results for image classification tasks. We evaluate on
CIFAR-10 for the tasks: in-domain classification, and out-of-distribution
detection with SVHN. Results are averaged over three seeds.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Semantic segmentation task

Figure: An example from the Cityscapes dataset.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Semantic segmentation results

Method Cityscapes Cityscapes-C lvl 1 Cityscapes-C lvl 2 Cityscapes-C lvl 3 Cityscapes-C lvl 4 Cityscapes-C lvl 5
mIoU ↑ ECE ↓ mIoU ↑ ECE ↓ mIoU ↑ ECE ↓ mIoU ↑ ECE ↓ mIoU ↑ ECE ↓ mIoU ↑ ECE ↓

Baseline (MCP) 76.84% 0.1180 51.59% 0.1793 41.45% 0.2291 35.67% 0.2136 30.12% 0.1970 24.84% 0.2131

Baseline (MCP) lipz. 58.38% 0.1037 44.70% 0.1211 38.04% 0.1475 32.70% 0.1802 25.35% 0.2047 18.36% 0.2948

MC-Dropout 71.88% 0.1157 53.61% 0.1501 42.02% 0.2531 35.91% 0.1718 29.52% 0.1947 25.61% 0.2184

Deep Ensembles 77.23% 0.1139 54.98% 0.1422 44.63% 0.1902 38.00% 0.1851 32.14% 0.1602 28.74% 0.1729

LDU (ours) 76.62% 0.0893 52.00% 0.1371 43.02% 0.1314 37.17% 0.1702 32.27% 0.1314 27.30% 0.1712

Table: Comparative results for semantic segmentation on Cityscapes and
Cityscapes-C (Hendrycks and Dietterich, 2019)13.

13Dan Hendrycks and Thomas Dietterich (2019). “Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations”. In: ICLR.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Monocular depth task

Figure: An example from the KITTI dataset. Upper: RGB Image; Lower:
depth ground truth by LIDAR.
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Quantifying DNNs’ uncertainty with LDU

Experiments

Monocular depth results

Method Depth performance Uncertainty performance

d1↑ d2↑ d3↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ log10↓ AUSE RMSE↓ AUSE Absrel↓
Baseline 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027 - -

Deep Ensembles 0.956 0.993 0.999 0.060 0.236 2.700 0.094 0.026 0.08 0.21

MC-Dropout 0.945 0.992 0.998 0.072 0.287 2.902 0.107 0.031 0.46 0.50

Single-PU 0.949 0.991 0.998 0.064 0.263 2.796 0.101 0.029 0.08 0.21

Infer-noise 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027 0.33 0.48

LDU #p = 5, λ = 1.0 0.954 0.993 0.998 0.063 0.253 2.768 0.098 0.027 0.08 0.21

LDU #p = 15, λ = 0.1 0.954 0.993 0.998 0.062 0.249 2.769 0.098 0.027 0.10 0.28

LDU #p = 30, λ = 0.1 0.955 0.992 0.998 0.061 0.248 2.757 0.097 0.027 0.09 0.26

Table: Comparative results for monocular depth estimation on KITTI
eigen-split validation set.
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Evaluating uncertainty
quantification with MUAD
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Evaluating uncertainty quantification with MUAD

Overview of the different datasets for uncertainty on autonomous driving:
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Foggy Driving 101 ✓ - - - 19 - - ✓ -

Foggy Zurich 40 ✓ - - - 19 - - - -

Nighttime Driving 50 - ✓ - - 19 - - - -

Dark Zurich 201 - ✓ - - 19 - - - -

Raincouver 326 - ✓ ✓ - 3 - - - -

WildDash 226 ✓ ✓ ✓ ✓ 19 - - - -

BDD100K 1346 ✓ ✓ ✓ ✓ 19 - - - -

ACDC 4006 ✓ ✓ ✓ ✓ 19 - ✓ ✓ -

Virtual KITTI 2 21260 ✓ - ✓ - 14 - ✓ ✓ ✓

Fishyscapes 373 - - - - 19+2 ✓ - - -

LostAndFound 1203 - - - - 19+9 ✓ - - -

RoadObstacle21 327 - ✓ - ✓ 19+1 ✓ - - -

RoadAnomaly21 100 - - - ✓ 19+1 ✓ - - -

Streethazard 6625 - - - - 13+250 ✓ - - -

BDD anomaly 810 ✓ ✓ ✓ ✓ 17+2 ✓ - - -

MUAD 10413 ✓ ✓ ✓ ✓ 16+9 ✓ ✓ ✓ ✓

Table: Comparative overview of the different datasets for uncertainty on
autonomous driving.
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MUAD dataset

Figure: Snapshots from the MUAD dataset showing different types of adverse
conditions and events to evaluate perception models.
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Evaluating uncertainty quantification with MUAD

MUAD dataset

10413 annotated images: 3420 images in the train set, 492 in the
validation set, and 6501 in the test set. 2/3 being day images and 1/3
night images.

3 types of adversity conditions with 2 intensity levels: Fog, Rain, Snow.

21 classes: 19 ID classes (same as Cityscapes), 2 OOD classes (object
anomalies and animals).

7 test sets: Normal sets, Normal set overhead sun, OOD set, Low adv.
Set High adv. Set, Low adv. with OOD set, High adv. with OOD set.

4 supported tasks: Semantic segmentation, Depth estimation, Object
detection 2D/3D, Instance segmentation.
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Evaluating uncertainty quantification with MUAD

Semantic segmentation results

Method normal set OOD set low adv. set high adv. set
mIoU ↑ ECE ↓ mIoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR ↓ mIoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR ↓ mIoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR ↓

Baseline (MCP) 68.90% 0.0138 57.32% 0.0607 0.8624 0.2604 0.3943 31.84% 0.3078 0.6349 0.1185 0.6746 18.94% 0.4356 0.6023 0.1073 0.7547

Baseline (MCP) lipz. 53.96% 0.01398 45.97% 0.0601 0.8419 0.2035 0.3940 16.79% 0.3336 0.6303 0.1051 0.7262 7.8% 0.4244 0.5542 0.0901 0.8243

MIR 53.96% 0.01398 45.97% 0.0601 0.6223 0.1469 0.8406 16.79% 0.3336 0.5143 0.1035 0.8708 7.8% 0.4244 0.4470 0.0885 0.9093

MC-Dropout 65.33% 0.0173 55.62% 0.0645 0.8439 0.2225 0.4575 33.38% 0.1329 0.7506 0.1545 0.5807 20.77% 0.3809 0.6864 0.1185 0.6751

Deep Ensembles 69.80% 0.01296 58.29% 0.0588 0.871 0.2802 0.3760 34.91% 0.2447 0.6543 0.1212 0.6425 20.19% 0.4227 0.6101 0.1162 0.7212

LDU (ours) 69.32% 0.01356 58.29% 0.0594 0.8816 0.4418 0.3548 36.12% 0.2674 0.7779 0.2898 0.5381 21.15% 0.4231 0.7107 0.2186 0.6412

Table: Comparative results for semantic segmentation on MUAD.
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Semantic segmentation results

Image groundtruth prediction

MCP gunc
ω ’s prediction

Figure: Illustration of the different confidence scores on one image of MUAD.
Note that the class train, bicycle, Stand food and the animals are OOD.
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Semantic segmentation results

Image groundtruth prediction

MCP gunc
ω ’s prediction

Figure: Illustration of the different confidence scores on one image of MUAD.
Note that the class train, bicycle, Stand food and the animals are OOD.
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Conclusions

Scalable uncertainty estimation with deterministic method:
We propose LDU: a modification for DNNs to better estimate their
predictive uncertainty.
LDU reaches results comparable to Deep Ensembles with less
computational cost.

MUAD dataset:
We provide a new synthetic dataset with multiple uncertainty
sources for autonomous driving.

35 / 38



Towards scalable uncertainty estimation with deterministic methods, and their fair evaluation
Conclusions

Other information

Latent Discriminant deterministic Uncertainty
https://arxiv.org/abs/2207.10130

MUAD: Multiple Uncertainties for Autonomous Driving, a
benchmark for multiple uncertainty types and tasks
https://muad-dataset.github.io/

36 / 38

https://arxiv.org/abs/2207.10130
https://muad-dataset.github.io/


Towards scalable uncertainty estimation with deterministic methods, and their fair evaluation
Conclusions

All references:
Blundell, Charles et al. (2015). “Weight uncertainty in neural
network”. In: ICML.
Corbière, Charles et al. (2019). “Addressing failure prediction by
learning model confidence”. In: NeurIPS.
Franchi, Gianni et al. (2021). “One Versus all for deep Neural
Network Incertitude (OVNNI) quantification”. In: IEEE Access.
Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a bayesian
approximation: Representing model uncertainty in deep learning”. In:
ICML.
Guo, Chuan et al. (2017). “On calibration of modern neural
networks”. In: ICML.
Hendrycks, Dan and Thomas Dietterich (2019). “Benchmarking
Neural Network Robustness to Common Corruptions and
Perturbations”. In: ICLR.
Kendall, Alex and Yarin Gal (2017). “What uncertainties do we need
in bayesian deep learning for computer vision?” In: NeurIPS.

37 / 38



Towards scalable uncertainty estimation with deterministic methods, and their fair evaluation
Conclusions

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell
(2017). “Simple and scalable predictive uncertainty estimation using
deep ensembles”. In: NeurIPS.
Nix, D.A. and A.S. Weigend (1994). “Estimating the mean and
variance of the target probability distribution”. In: ICNN.
Padhy, Shreyas et al. (2020). “Revisiting one-vs-all classifiers for
predictive uncertainty and out-of-distribution detection in neural
networks”. In: ICML Workshops.
Van Amersfoort, Joost et al. (2020). “Uncertainty estimation using a
single deep deterministic neural network”. In: ICML.
Yu, Xuanlong, Gianni Franchi, and Emanuel Aldea (2021). “SLURP:
Side Learning Uncertainty for Regression Problems”. In: BMVC.

38 / 38


	Uncertainty and Deep learning
	Quantifying DNNs' uncertainty
	Quantifying DNNs' uncertainty with LDU
	Introduction on LDU
	Experiments

	Evaluating uncertainty quantification with MUAD
	Conclusions
	References

